Exam Seat No: Enrollment No: _

C. U. SHAH UNIVERSITY

Summer Examination-2020

Subject Name: Mathematical Concepts for Computer Science

Subject Code: 4CS01BMA2 Branch: B.C.A.

Semester: 1 Date: 26/02/2020 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 **Attempt the following questions:** [14]

(01)

(01)

- a) Which of the following matrix is of the order 3×2 ? (01)
- a) $\begin{bmatrix} 3 & 4 \\ 9 & 3 \end{bmatrix}$ b) $\begin{bmatrix} 2 & 3 \\ 3 & 3 \end{bmatrix}$ c) $\begin{bmatrix} 3 & 2 & 9 \\ 7 & 3 & 0 \end{bmatrix}$ d) $\begin{bmatrix} 3 & 2 \\ 0 & 9 \\ 0 & 2 \end{bmatrix}$

- **b)** What is the cardinality of a set $\{x \in \mathbb{N}/1 < x \le 5\}$? c) If $A^2 = I$, then the matrix A is known as _____
 - a) Idempotent Matrix

c) Nilpotent Matrix

b) Involutary Matrix

- d) Identity Matrix
- **d)** Which of the following matrix is a type of Lower Triangular Matrix? (01)

a)
$$\begin{bmatrix} 3 & 0 & 9 \\ 0 & 3 & 8 \\ 0 & 0 & 0 \end{bmatrix}$$
b)
$$\begin{bmatrix} 0 & 0 & 0 \\ 3 & 3 & 0 \\ 9 & 0 & 3 \end{bmatrix}$$
c)
$$\begin{bmatrix} 3 & 0 & 0 \\ 4 & 3 & 0 \\ 1 & 0 & 8 \end{bmatrix}$$
d)
$$\begin{bmatrix} 3 & 0 & 9 \\ 0 & 3 & 8 \\ 0 & 0 & 0 \end{bmatrix}$$

b)
$$\begin{bmatrix} 0 & 0 & 0 \\ 3 & 3 & 0 \\ 9 & 0 & 3 \end{bmatrix}$$
d)
$$\begin{bmatrix} 3 & 0 & 9 \\ 0 & 3 & 8 \\ 0 & 0 & 0 \end{bmatrix}$$

e) Give example of onto function.

(01)

Give one example of odd function.

(01)

Let $A = \begin{bmatrix} 1 & 4 \\ 0 & 9 \end{bmatrix}$, find minor of the element '1'.

(01)

h) Define: Diagonal Matrix

(01)

i) What do you mean by $x \to \infty$?

(01)

j) Give one example of column matrix.

- (01)(01)
- Consider the matrix $A = \begin{bmatrix} 3 & 0 \\ 8 & 9 \end{bmatrix}$ then the cofactor of 3 =_____.

	1)	$\lim_{x\to 0}\frac{\sin x}{x}=\underline{\qquad}.$	(01)	
	m)	Let $U = \{1, 2,, 8\}$ and $A = \{2, 6, 5, 8\}$ then find A^c .	(01)	
	n)	Let $A = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$, then tr A =	(01)	
Attempt any four questions from Q-2 to Q-8				
Q-2	a)	Attempt all questions. Check whether the function $f: \mathbf{R} \to \mathbf{R}$ is even,odd, neither even nor odd? i) $f(x) = x^2 - 3x + 2$ ii) $f(x) = x^2 + 4$ iii) $f(x) = x^3 - 2x$	[14]	
	b)	Draw a graph of a function $f: \mathbf{R} \to \mathbf{R}$ defind by $f(x) = x $, $x \in \mathbf{R}$	(05)	
	c)	Define the following terms with examples: i) Increasing function ii) Constant function iii) Onto function	(03)	
Q-3	a)	Attempt all questions Let $A = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 1 & 0 \end{bmatrix}$ then find A^3 .	[14] (07)	
	b)	Let $A = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ then find A^3 . Let $A = \begin{bmatrix} 3 & 6 & 0 \\ 7 & 5 & 4 \\ 1 & -2 & 1 \end{bmatrix}$ then find $A^2 + I$, where I is an identity matrix.	(05)	
	c)	Let $A = \begin{bmatrix} 7 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & -1 & 2 \\ 0 & -4 & 5 \end{bmatrix}$ then find $A - 5B$.	(02)	
Q-4	a)	Attempt all questions Let $A = \begin{bmatrix} 1 & 0 & 3 \\ 10 & 9 & 9 \\ -1 & 5 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 6 & 7 & -1 \\ 1 & 2 & 4 \\ 1 & -7 & 6 \end{bmatrix}$, then find $2AB$.	[14] (07)	
		Show that the given relation R is an Equivalence relation on a set A.	(04)	
	c)	$A = \{1,2,3,4\}$, $R = \{(1,1), (1,4), (4,1), (4,4), (2,3), (2,2), (3,2), (3,3)\}$. Check whether the relation is reflexive or symmetric? $A = \{1,2,3\}$, $R = \{(1,1), (2,2), (1,3), (3,1)\}$	(03)	
Q-5	a)	Attempt all questions Let $A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 1 & -1 \\ 3 & 1 & 2 \end{bmatrix}$, find A^{-1} if possible.	[14] (06)	
	b)	Find the value of k if the points $(2,3)$, $(4,k)$ and $(6,-3)$ are collinear.	(04)	
	c)	Verify $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ for the following sets: $A = \{1, 2,, 10\}$, $B = \{6, 2, 10\}$, $C = \{2, 8, 9\}$	(04)	
Q-6		Attempt all questions	[14]	
		AST HUNITED	Page 2 of 3	

a) 27 b) -9 c) 27

d) 9

	a)	In which ratio does the point $(7,3)$ divide the line segement joining the points $P(4,-3)$ and $(8,5)$?	(07)
	b)	Find distance between two points: i) Distance between (0,0) and (36,15) ii) Distance between (a,b) and (-a,-b)	(04)
	c)	Find the area of triangle made by following points: $(1,-1), (-4,6)$ and $(-3,-5)$	(03)
Q-7		Attempt all questions	[14]
	a)	Let $A = \begin{bmatrix} 9 & 6 & 3 \\ 4 & 4 & 1 \\ 7 & -2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 6 & 0 & 0 \\ -2 & 4 & 0 \\ 1 & 6 & 2 \end{bmatrix}$, then find $A^2 - 2B + I$, where I is an identity matrix.	(06)
	b)	Verify De-Morgan's Law for the following sets:	(04)
		$U = \{1,2,,15\}$, $A = \{1,4,7,10,13,15\}$ and $B = \{2,5,7,9,14\}$	
	c)	Define the following terms with examples: i) Singleton set ii) Disjoint sets	(04)
Q-8		Attempt all questions	[14]
	a)	Let $A = \{x \in \mathbb{N} \mid 2 \le x \le 10\}$, $B = \{x \in \mathbb{Z} \mid -5 \le x \le 0\}$ then find $A \cup B$, $A \cap B$, $A \cap B$ and $B - A$.	(05)
	b)	Draw a Venn Diagram for the following sets:	(05)
	-)	$U = \{1, 2,, 14\}, A = \{1, 3, 8, 10\}, B = \{3, 4, 14, 12\}, C = \{4, 6, 8, 11\}$	(0.4)
	c)	Find 1) $\lim_{x\to 5} 3(9x-2)$ 2) $\lim_{x\to 5} \frac{x-7}{x+5}$	(04)
		3) $\lim_{x\to 0} (4x^2 - x + 1)(x - 2)$	
		3) $\lim_{x\to 0} (4x^2 - x + 1)(x - 2)$ 4) $\lim_{x\to 0} (x + 1)^{\frac{1}{x}}$	

